Efficient Inverted Organic Solar Cells Based on a Fullerene Derivative-Modified Transparent Cathode
نویسندگان
چکیده
Indium tin oxide (ITO) is a transparent conductive material which is extensively used in organic solar cells (OSCs) as electrodes. In inverted OSCs, ITO is usually employed as a cathode, which should be modified by cathode buffer layers (CBLs) to achieve better contact with the active layers. In this paper, an amine group functionalized fullerene derivative (DMAPA-C60) is used as a CBL to modify the transparent cathode ITO in inverted OSCs based on PTB7 as a donor and PC71BM as an acceptor. Compared with traditional ZnO CBL, DMAPA-C60 exhibited comparable transmittance. OSCs based on DMAPA-C60 show much better device performance compared with their ZnO counterparts (power conversion efficiencies (PCEs) improved from 6.24 to 7.43%). This is mainly because a better contact between the DMAPA-C60 modified ITO and the active layer is formed, which leads to better electron transport and collection. Nanoscale morphologies also demonstrate that the surface of DMAPA-C60-modified ITO is plainer than the ZnO counterparts, which also leads to the better device performance.
منابع مشابه
Performance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layer
In this paper, we reported that ZnO nanoparticles (NPs) film modified with C60 pyrrolidine tris-acid ethyl ester (PyC60) was used as cathode buffer layer in inverted polymer solar cells. The resultant device with a blend of PTB7:PC71BM as photoactive materials exhibited an open-circuit voltage (Voc) of 0.753 V, a short-circuit current (Jsc) of 16.04 mA cm , a fill factor (FF) of 72.5%, and an o...
متن کاملEnhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer
A novel fullerene cathode interlayer is employed to facilitate the fabrication of stable and efficient perovskite solar cells. This modified fullerene surfactant significantly increases air stability of the derived devices due to its hydrophobic characteristics to enable 80% of the initial PCE to be retained after being exposed in ambient condition with 20% relative humidity for 14 days.
متن کاملRational molecular engineering towards efficient non-fullerene small molecule acceptors for inverted bulk heterojunction organic solar cells.
Two non-fullerene small molecules based on fluoranthene-fused imide were developed as acceptors for solution-processed inverted organic bulk heterojunction (BHJ) solar cells, which showed good power conversion efficiency and high open-circuit voltage.
متن کاملIMPACT OF THE MORPHOLOGY OF TiO2 FILMS AS CATHODE BUFFER LAYER ON THE EFFICIENCY OF INVERTED-STRUCTURE POLYMER SOLAR CELLS
Semiconducting metal-oxide TiO2 films were deposited on FTO substrates via a sol-gel method to fabricate inverted polymer solar cells. The pore size of the TiO2 films was effectively controlled by using the sols different in stirring time. The solar cell was constructed with a fullerene derivative interlayer and a photoactive mixture of poly(3hexylthiophene) (P3HT) and phenyl-C61-butyric acid m...
متن کاملSemitransparent organic photovoltaic cells with laminated top electrode.
We demonstrate semitransparent small molecular weight organic photovoltaic cells using a laminated silver nanowire mesh as a transparent, conductive cathode layer. The lamination process does not damage the underlying solar cell and results in a transparent electrode with low sheet resistance and high optical transmittance without impacting photocurrent collection. The resulting semitransparent...
متن کامل